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A Noncommutative Approach to Ordinary
Differential Equations

F. Bagarello1

We adapt ideas coming from Quantum Mechanics to develop a non-commutative strat-
egy for the analysis of some systems of ordinary differential equations. We show that the
solution of such a system can be described by an unbounded, self-adjoint and densely de-
fined operator H which we call, in analogy with Quantum Mechanics, the Hamiltonian
of the system.

We discuss the role of H in the analysis of the integrals of motion of the system.
Finally, we apply this approach to several examples.
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1. INTRODUCTION

The mathematical analysis of systems of ordinary differential equations
(SODE) is quite an old subject in pure and applied mathematics and there are
not many aspects which still seem to require a deeper analysis: existence of so-
lutions and their explicit analytic expressions, uniqueness, symmetries, are all
been considered in hundreds of papers and books. However, in none of these
papers our point of view has ever been considered, as far as we know. In this
paper we will show that the solution of a SODE can be considered as a sort of
quantum evolution of a fictitious closed quantum system and, for this reason, can
be analyzed using the well established strategies discussed in all the textbooks
of quantum mechanics (QM), (Cohen-Tannoudji et al., 1977 Merzbacher, 1970;
Schiff, 1968). Among the other results, this time evolution is implemented by
unitary operators, and this feature simplifies many aspects of the usual approach
to SODE.

Other advantages of our approach are related to the analysis of the integrals
of motion of the SODE under consideration, also via a sort of second quantized
approach, and to the study of the symmetries. Also, our method gives rise quite
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naturally to a perturbation scheme which produces always the solution of the SODE
to the wanted order after some purely algebraic computations.

The paper is organized as follows:
in the next section we introduce our strategy and discuss some general results;
in Section 3 we consider the problem of the integrals of motion and analyze

in some details a number of examples;
in Section 4 we consider all the mathematical details, which are crucial in

order to make the approach rigorous, and then we discuss some preliminary results
on symmetries and some future projects.

2. THE METHOD

Let us consider the following autonomous SODE in normal form


ẋ1 = f1(x1, x2, . . . , xN )
ẋ2 = f2(x1, x2, . . . , xN )

· · ·
· · ·

ẋN = fN (x1, x2, . . . , xN )

(2.1)

with the following initial conditions: x j (0) = xo
j , for j = 1, 2,. . . , N . Throughout

this paper we will suppose that the functions fi above are such that the solution
exists unique. Conditions for that are very well known in the standard literature of
ordinary differential equations and will not be discussed here. The only condition
which we want to state explicitly is that all the functions f j are real (this is not
essential!) and holomorphic, so that they can be expanded as power series which
are uniformly convergent inside a certain polydisk.

This system will be solved using a suggestion coming from quantum
mechanics: given a quantum mechanical systemS and the related set of observables
OS , that is the set of all the (self-adjoint) bounded (or, more often, unbounded) op-
erators related to S, it is well known that the Heisenberg evolution of any X ∈ OS
satisfies the Heisenberg operator equation of motion

dX (t)

dt
= i[H, X (t)]. (2.2)

Here H is the hamiltonian of the system, which is a self-adjoint densely de-
fined operator acting on the Hilbert space of the theory H, which represents the
energy of S, while [A, B] = AB − B A is the commutator between A, B ∈ OS .
All the details of this approach can be found in (Cohen-Tannoudji et al., 1977
Merzbacher, 1970; Schiff, 1968). A formal solution of (2.2), if H does not de-
pend explicitly on time, is X (t) = eiHt X0e−i Ht , where X0 is the initial value of
X (t). We say that ei Ht X0e−i Ht is formal because this quantity can be defined as a
(norm convergent) infinite series,

∑∞
k=0

(i t)k

k! [H, X0]k , only if H and X are bounded
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while more sophisticated techniques coming from functional analysis and operator
theory are required when, e.g., H is unbounded. Here [A, B]k is the multiple com-
mutator defined recursively as [A, B]0 = B, [A, B]k = [A, [A, B]k−1]. We refer
to (Bratteli and Robinson, 1989a,b Reed and Simon, 1980) for some introductory
results on this aspect of quantum dynamics and to (Antoine et al., 1999; Bagarello
and Trapani, 2002) for some recent results.

We will postpone all the mathematical aspects concerning our approach to
the last section, in which we will show how all the steps we are going to propose
here can be made rigorous in an operator algebraic framework. In this section and
in the following one we will avoid dealing with all these details in order to make
more transparent our procedure.

Let us go back to system (2.1). What we have in mind is looking for a (formal)
solution of this system of the following form:

x j (t) = eiHt xo
j e

−i Ht , j = 1, 2, . . . , N , (2.3)

for some self-adjoint operator H . Since the system (2.1) is a classical one, all the
variables x j are classical quantities, so that they must commute among them:

[x j , xk] = 0 j, k = 1, 2, . . . , N . (2.4)

This means that [ϕ(x1, . . . , xN ), �(x1, . . . , xN )] = 0 for any two functions ϕ and
� depending on x j . For this reason, if H would only depend on x j , we could only
get a trivial dynamical behavior since, from (2.3), we get

x j (t) = eiHt xo
j e

−i Ht = xo
j e

iHte−i Ht = xo
j

Therefore, such an H can only describes a static behavior. In order to describe some
different time evolution a natural possibility is to double the space of the variables
in the following way: to each variable xo

j we associate a canonical conjugate
momentum p j such that[

xo
j , pk

] = iδ j,k11 j, k = 1, 2, . . . , N . (2.5)

This means that the initial position xo
j must now be considered as an operator

acting on some Hilbert space H (see Section IV), p j is another operator acting
again on H which satisfies [xo

j , p j ] = i11 and commutes with all the other position
operators xo

k , k 	= j . The commutation rules (2.5) must be considered together
with the following ones[

xo
j , xo

k

] = [p j , pk] = 0 j, k = 1, 2, . . . , N , (2.6)

which show that variables labelled by different indices are mutually independent.
Standard results in QM show that, for any differentiable function ϕ(xo

1 , . . . , xo
N ),

we have [
p j , ϕ

(
xo

1 , . . . , xo
N

)] = −i
∂ϕ

∂xo
j

, j = 1, . . . , N . (2.7)
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This follows from the fact that, in the so-called x-representation of QM, the momen-
tum operator p j has the following representation: p j = −i ∂

∂xo
j
, while xo

j behaves

simply as a multiplication operator. It is also relevant here to consider functions
of the momenta and their commutators with the position operators. We have, for
any differentiable function ϕ̂(p1, . . . , pN ),[

xo
j , ϕ̂(p1, . . . , pN )

] = i
∂ϕ̂

∂p j
, j = 1, . . . , N . (2.8)

This is a consequence of the fact that, in the p-representation of QM, the position
operator xo

j has the following representation: xo
j = i ∂

∂p j
, while p j is now simply a

multiplication operator. The x and p representations are unitarily equivalent, so that
choosing one instead of the other is merely a fact of opportunity, (Cohen-Tannoudji
et al., 1977 Merzbacher, 1970; Schiff, 1968).

Let us now define the following operator:

H (
f0) = 1

2

N∑
j=1

{p j f j (x
o
1 , xo

2 , . . . , xo
N ) + f j (x

o
1 , xo

2 , . . . , xo
N )p j }, (2.9)

where we have introduced 
f0 = ( f1( 
Xo), f2( 
Xo), . . . , fN ( 
Xo)), 
Xo = (xo
1 ,

xo
2 , . . . ,xo

N ). As we have already said, we will come back on the mathematical
properties of all the operators introduced up to now in Section 4. Here we want to
remark that calling H the hamiltonian of (2.1) can be seen as an abuse of language,
since it is absolutely not clear how to distinguish between a kinetic and a potential
term in (2.9). Moreover, it is not even clear which is the physical quantum system
we are referring to. Finally, as in classical mechanics, usually in QM the kinetic
term in an hamiltonian is quadratic in the momenta operators, while the operator H
in (2.9) depends on p j linearly. Nevertheless we will now show that H describes
the dynamical behavior of (2.1) exactly in the same way in which an ordinary
hamiltonian does in QM. To show this we compute the following time derivative:

d

dt

(
eiHt xo

j e
−i Ht

) = ieiHt
[
H, xo

j

]
e−i Ht = i

2
eiHt

[
p j f j

(
xo

1 , xo
2 , . . . , xo

N

)
+ f j

(
xo

1 , xo
2 , . . . , xo

N

)
p j , xo

j

]
e−i Ht

= i

2
eiHt

([
p j , xo

j

]
f j

(
xo

1 , xo
2 , . . . , xo

N

)
+ f j

(
xo

1 , xo
2 , . . . , xo

N

)[
p j , xo

j

])
e−i Ht

= eiHt f j
(
xo

1 , xo
2 , . . . , xo

N

)
e−i Ht ,

where we have used (2.5), (2.6) and the usual properties of the commutators like,
for instance, the following equality: [AB, C] = [A, C]B + A[B, C]. Using now
the properties of the unitary operators e±i Ht we deduce easily that, for instance,
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eiHt xo
j (x

o
k )2e−i Ht = (eiHt xo

j e
−i Ht )(eiHt xo

k e−i Ht )2, so that, because of the analyt-
icity of f j , the following crucial equality holds:

eiHt f j
(
xo

1 , xo
2 , . . . , xo

N

)
e−i Ht = f j

(
eiHt xo

1 e−i Ht , eiHt xo
2 e−i Ht , . . . , eiHt xo

N e−i Ht
)
.

We can conclude, therefore, that {eiHt xo
j e

−i Ht , j = 1, 2, . . . , N } satisfies
(as operators) system (2.1) with the same initial conditions as above. Due to the
uniqueness of the solution, therefore, x j (t) = eiHt xo

j e
−i Ht is exactly the solution

we were looking for. We will discuss in Section 4 in which sense our operatorial
solution coincides with the classical solution of (2.1).

Using now some algebra of the commutators we will recover the following
well known classical result


X (t) = (x1(t), x2(t), . . . , xN (t)) = eiHt 
Xoe−i Ht = et 
f0· 
∇0 
Xo, (2.10)

where 
∇0 = ( ∂
∂xo

1
, ∂

∂xo
2
, . . . ∂

∂xo
N

).
For that we first need the following result[
H, h

(
xo

1 , . . . , xo
N

)]
k = (−i)k(
f0 · 
∇0)kh

(
xo

1 , . . . , xo
N

)
, k = 0, 1, 2, . . . ,

(2.11)

where h(xo
1 , . . . , xo

N ) is any holomorphic function and H the operator in (2.9). This
result is proved by induction: the statement for k = 0 is trivially true just because
of the definition of multiple commutator.

For k = 1 the result follows from the commutation rules in (2.5), (2.6) and
(2.7).

Finally, using the hypothesis of induction, we get:

[H, h]k+1 = [H, [H, h]k] = (−i)k[H, (
f0 · 
∇0)kh]

= (−i)k
(
(−i)(
f0 · 
∇0)[(
f0 · 
∇0)kh]

) = (−i)k+1(
f0 · 
∇0)k+1h.

Now, since

x j (t) = eiHt xo
j e

−i Ht =
∞∑

k=0

(i t)k

k!

[
H, xo

j

]
k

= xo
j +

∞∑
k=1

(i t)k

k!

[
H, xo

j

]
k
,

and since, for k ≥ 1, [H, xo
j ]k = (−i)k(
f0 · 
∇0)k−1 f j ( 
Xo) (this result can also be

proved using induction together with (2.11)), we find:

x j (t) = xo
j +

∞∑
k=1

(t)k

k!
(
f0 · 
∇0)k−1 f j ( 
Xo).

It is easy to prove now that (
f0 · 
∇0)−1 f j ( 
Xo) = xo
j . In fact, calling ϕ j ( 
Xo) =

(
f0 · 
∇0)−1 f j ( 
Xo), the equation (
f0 · 
∇0)ϕ j ( 
Xo) = f j ( 
Xo) is solved by ϕ j ( 
Xo) =
xo

j . Of course, this does not mean that (
f0 · 
∇0)−1 exists as an everywhere defined
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operator, but only that it can be defined on f j , which is surely enough for our
present purposes. Now we have:

x j (t) = xo
j +

∞∑
k=1

(t)k

k!
(
f0 · 
∇0)k((
f0 · 
∇0)−1 f j ( 
Xo))

= xo
j +

∞∑
k=1

(t)k

k!
(
f0 · 
∇0)k xo

j =
∞∑

k=0

(t)k

k!
(
f0 · 
∇0)k xo

j = et(
f0· 
∇0)xo
j ,

as we had to prove.

Remark 2.1. Notice that in et 
f0· 
∇0 
Xo there is no longer reference to the conjugate
momenta: this formula looks as a classical one, and, in fact, it is well known in the
literature, (Grobner, 1973).

The two expressions for 
X (t) in (2.10) can be interpretated in a peculiar way,
which has again an analogous in QM. In fact considering 
X (t) = eiHt 
Xoe−i Ht ,
H appears to be the generator of the one-parameter group Ut : 
Xo → 
X (t) which
describes the time evolution of the system. Analogously, 
X (t) = et 
f0· 
∇0 
Xo shows
that the same time evolution can be described by a semigroup whose generator is

f0 · 
∇0. This fact, which might appear a bit confusing, is indeed easy to understand:
the price we have to pay to move from a dynamical semigroup to a dynamical
group, which is by far easier to be handled, is that we have to double the number
of variables involved in the description of the system: from 
X to ( 
X , 
P), where

P = (p1, p2, . . . , pN ). This fact reflects surprisingly well what happens in the
description of any quantum open system I: in fact, suppose that I is a quantum
system interacting with a backgroundB. It is well known, see the standard textbook
(Davies, 1976), that the effect of this interaction can be taken into account by using
a one-parameter semigroup which describes the dynamical behavior of I. This is
because the energy of I is not preserved during the time evolution (since there is
an exchange of energy with B). However, if we enlarge the system, considering
I + B as a whole, it is clear that the situation changes: the energy of this composite
system is conserved, and, for this reason, the dynamics can be described by a one-
parameter group of transformations. To achieve this result, however, we have to add
all the variables related to the background B to the set of the physical observables.
In a sense, this is what we have done in our procedure here: we have introduced a
sort of background whose variables, p j , have to be considered together with the
original variables of the system, x j . This is the way in which we can get an unitary
time evolution.

We use now our approach to prove the so called exchange theorem, (Grobner,
1973), restricting to N = 2 in (2.1) to simplify the notation: this theorem states
essentially that, given the holomorphic functions 
f = ( f1, f2) and ϕ(x , y), then

et 
f · 
∇ϕ(x , y) = ϕ(et 
f · 
∇ x , et 
f · 
∇ y). (2.12)
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It is absolutely trivial to prove the unitary version of this theorem, as we have
already seen before:

eit Hϕ(x , y)e−i t H = ϕ(eit H xe−i t H , eit H ye−i t H ). (2.13)

It is just a bit harder to use our approach to prove formula (2.12). Let us define the
following functions:

ϕ1(x , y, t) = et 
f · 
∇ϕ(x , y) and ϕ2(x , y, t) = eit Hϕ(x , y)e−i t H .

Incidentally, we notice that ϕ2 only depends on x , y and t , as can be deduced
expanding ϕ2 as a series of multiple commutators and using (2.7) several times. It
is easy to check that ϕ1(x , y, t) and ϕ2(x , y, t) satisfy the same differential equation

∂u

∂t
= f1

∂u

∂x
+ f2

∂u

∂y
,

with the same initial condition ϕ1(x , y, 0) = ϕ2(x , y, 0) = ϕ(x , y). It is well
known, (John, 1982), that under the above assumptions on 
f and ϕ, the solu-
tion of this equation is unique: this means that ϕ1(x , y, t) = ϕ2(x , y, t). We have,
therefore:

et 
f · 
∇ϕ(x , y) = eit Hϕ(x , y)e−i t H = ϕ(eit H xe−i t H , eit H ye−i t H )

= ϕ(et 
f · 
∇ x , et 
f · 
∇ y),

because of the (2.10).

Remark 2.2. As in the usual approach to SODE, it is quite easy to extend our
approach to systems in which the functions f j in (2.1) depend explicitly on time.
The trick is the usual one: a system like this{

ẋ1 = f1(x1, x2, t)
ẋ2 = f2(x1, x2, t)

(2.14)

can be rewritten in the following way simply by adding another variable and an
extra equation for this new variable:


ẋ1 = f1(x1, x2, x3)
ẋ2 = f2(x1, x2, x3)
ẋ3 = 1.

(2.15)

This system is again of the form (2.1), with N = 3 and f3(x1, x2, x3) = 1.

3. INTEGRALS OF MOTION

For our original system (2.1), an integral of motion is a function I of all the
x j such that, calling x j (t), j = 1, 2, . . . , N , the unique solution of (2.1), we have
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I (x1(t), . . . , xN (t)) = I0, constant in time. The relevance of such an integral of
motion in the analysis of (2.1) is very well known. What is interesting here is
consider this notion in our perspective. First of all, we have to answer an obvious
question: what do we have to call, now, integral of motion? This question arises
because of the doubling of variables which we have discussed in the previous
section. So we introduce the following different definitions:

(a) we still call integral of motion (IoM) of system (2.1) any holomorphic
function I depending only on the x j such that I (x1(t), . . . , xN (t)) = I0, ∀t ;

(b) then we call extended integral of motion (EIoM) of system (2.1) any holo-
morphic function J depending on the x j , pk such that J (x1(t), . . . , xN (t),
p1(t), . . . , pN (t)) = J0, ∀t , where x j (t) = eiHt xo

j e
−i Ht and p j (t) = eiHt

p j e−i Ht , j = 1, 2, . . . , N .

Therefore, what we call an IoM is also an integral of motion in the standard
sense, while an EIoM is intrinsically related to our approach. Also, it is clear from
these definitions that any IoM is a particular EIoM. For this reason, whenever we
will need to be general, we will consider EIoM.

In this section we will discuss some strategies to find these integrals of motion
(extended or not) and some examples. We will also show that QM suggests an
interesting strategy, called second quantization, which can be quite useful in finding
constants of motion using simple energetic considerations for a fictitious system
of quantum particles.

The first result follows from our unitary representation of the time evolution
for (2.1): an holomorphic function J , depending on the xo

j , pk , is an EIoM if, and
only if, [

H, J
(
xo

1 , . . . , xo
N , p1, . . . , pN

)] = 0 (3.1)

To prove this statement we recall that, since J is holomorphic, we have

J (x1(t), . . . , xN (t), p1(t), . . . , pN (t))

= (eiHt xo
1 e−i Ht , . . . , eiHt xo

N e−i Ht , eiHt p1e−i Ht , . . . , eiHt pN e−i Ht )

= eiHt J
(
xo

1 , . . . , xo
N , p1, . . . , pN

)
eiHt

= J
(
xo

1 , . . . , xo
N , p1, . . . , pN

)
,

because of (3.1).
Therefore the problem of finding EIoM is solved once we can find operators

which commute with the hamiltonian H in (2.9). Of course, H is by itself an EIoM
in our sense, since it depends on p j and xo

j and since [H, H ] = 0. This implies
that any SODE admits at least an EIoM, which is the operator H . It is interesting,
of course, to discuss here the existence of other EIoM.
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Let us see first of all what this commutativity condition becomes for ordinary
IoM. In this case we need the commutation rule in (2.11) for k = 1, which gives
the following equivalence statement:[

H, J
(
xo

1 , . . . , xo
N

)] = 0 ⇐⇒ ( 
f 0 · 
∇0)J
(
xo

1 , . . . , xo
N

) = 0, (3.2)

which is exactly what we expect since the equation on the right simply states that
d
dt J (x1(t), . . . , xN (t)) = 0. So, at least as far as IoM are concerned, our approach
produces the same results as the standard procedure, even if may be easier to find
operators commuting with H instead of solving the partial differential equation
in (3.2). We will see examples of this fact in Examples 2 and 4 below and when
considering the second quantization approach.

Quite different is the situation for EIoM. In order to avoid useless complica-
tions, we will consider from now on N = 2 in (2.1), since this constraint does not
limit the validity of our results and makes all the proofs and statements more read-
able. Under this assumption, we now prove the following commutation relations,
which will be used later in the paper:

[p j , H ( 
f 0)]n = (−i)n H
(


f (n)
0,xo

j

)
, n = 0, 1, 2, . . . (3.3)

[
H ( 
f 0), pn

j

] = −
n∑

s=1

(
n
s

)
(−i)s H

(

f (s)

0,xo
j

)
pn−s

j , n = 0, 1, 2, . . . (3.4)

Moreover, if 
ϕ = (ϕ1, ϕ2) and 
� = (�1, �2) are regular functions (we will
assume that they are at least differentiable two times), then

[H (
ϕ), H ( 
�)] = H ( 
�). (3.5)

Here we have introduced the following notation:


f (n)
0,xo

j
= ∂n 
f 0

∂(xo
j )

n
,

and


� = (�1, �2) = i( 
� · ( 
∇ϕ1) − 
ϕ · ( 
∇�1), 
� · ( 
∇ϕ2) − 
ϕ · ( 
∇�2)). (3.6)

The proof of (3.3) is given by induction. Let us first observe that for n = 0 the
statement is trivial, while for n = 1 it follows from the definition (2.9) of H , from
the commutation rule (2.7) and from the usual properties of the commutators. For
instance we have

[p1, H ( 
f 0)] = 1

2
[p1, p1 f1

(
xo

1 , xo
2

) + f1
(
xo

1 , xo
2

)
p1 + p2 f2

(
xo

1 , xo
2

)
+ f2

(
xo

1 , xo
2

)
p2] = 1

2

(
p1

(
−i

∂ f1

∂xo
1

)
+

(
−i

∂ f1

∂xo
1

)
p1
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+p2

(
−i

∂ f2

∂xo
1

)
+

(
−i

∂ f2

∂xo
1

)
p2

)
= −i H

(
∂ 
f 0

∂xo
1

)

The second step of induction goes as follows:

[p1, H ( 
f 0)]n+1 = [p1, [p1, H ( 
f 0)]n] = (−i)n
[

p1, H
( 
f (n)

0,xo
j

)]
= (−i)n(−i)H

(
∂ 
f (n)

0,xo
1

∂xo
1

)
= (−i)n+1 H

( 
f (n+1)
0,xo

j

)
The proof of (3.4) is similar and is left to the reader. Equation (3.5) it is easier to
be proved by making use of an equivalent expression for H , which follows from
(2.9) and (2.7):

H (
ϕ) = 
ϕ · 
p − i

2

∇ · 
ϕ (3.7)

Using this expression we get

[H (
ϕ), H ( 
�)] = [
ϕ · 
p, 
� · 
p] − i

2
[
ϕ · 
p, 
∇ · 
�] − i

2
[ 
∇ · 
ϕ, 
� · 
p]

since the last contribution ( i
2 )2 [ 
∇ · 
ϕ, 
∇ · 
�] is obviously zero. Using (2.7) several

times and the definition of 
� we first deduce that [
ϕ · 
p, 
� · 
p] = 
� · 
p, while an
explicit check, which makes use of equation (2.7) again, shows that

− i

2
[
ϕ · 
p, 
∇ · 
�] − i

2
[ 
∇ · 
ϕ, 
� · 
p] = i

2
([ 
∇ · 
�, 
ϕ · 
p] − ( 
� ↔ 
ϕ))

= − i

2

∇ · 
�.

Therefore formula (3.5) follows.

Remark 3.1. Let us take, for instance, 
� = (1, 0). Then H ( 
�) = p1 and (3.5)
and 3.6) imply that [H (
ϕ), H ( 
�)] = H ( 
�) = i H ( ∂ 
ϕ

∂(x1) ). It is clear that (3.3) gives

the same result, taking n = 1 and 
ϕ = 
f 0.
Other useful commutation rules are the following

[H ( 
f ), p1]n = H
( 
�(n)

(x)

)
, [H ( 
f ), p2]n = H

( 
�(n)
(y)

)
, n = 1, 2, 3, . . . (3.8)

where we have defined recursively the functions:



�(0)
(x) = (1, 0), 
�(0)

(y) = (0, 1)


�(n)
(x) = i( 
�(n−1)

(x) · ( 
∇ f1) − 
f · ( 
∇ 
�(n−1)
(x),1 ), 
�(n−1)

(x) · ( 
∇ f2) − 
f · ( 
∇ 
�(n−1)
(x),2 ))


�(n)
(y) = i( 
�(n−1)

(y) · ( 
∇ f1) − 
f · ( 
∇ 
�(n−1)
(y),1 ), 
�(n−1)

(y) · ( 
∇ f2) − 
f · ( 
∇ 
�(n−1)
(y),2 ))

(3.9)
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These commutation rules are proved simply iterating the proof of equation
(3.5) with a proper choice of the function 
� at each step of the iteration (for instance,

� must be taken equal to (1, 0) for the first step to prove the first commutation
rule in (3.8), while 
� = (0, 1) for the second one).

We have now all the ingredients to find the time evolution for p j . We have,
recalling that p1 = H ( 
�(0)

(x)),

p1(t) = ei Ht p1e−i Ht =
∞∑

k=0

(i t)k

k!
[H ( 
f 0), p1]k

= p1 +
∞∑

k=1

(i t)k

k!
H

( 
�(k)
(x)

) = H

( ∞∑
k=0

(i t)k

k!

�(k)

(x)

)
(3.10)

and, analogously,

p2(t) = ei Ht p2e−i Ht = H

( ∞∑
k=0

(i t)k

k!

�(k)

(y)

)
. (3.11)

Of course, the problem of the convergence of the series has to be considered.
We have no general result for this, because of the rather involved expression for

�(k)

( j), j = x , y, which makes quite difficult to find some a priori estimates. Of
course, there is no problem for t = 0 since both the series above reduce to a single
contribution. Also, in almost all the examples we will consider, the series both
converge explicitly, because of the following general result: if 
�(k)

( j) = 
0, j = x ,

j = y for a certain k, then 
�(l)
( j) = 
0 for all l ≥ k. This is a trivial consequence of

the definitions (3.9).
Before giving some general statement on the EIoM, we list below some

particular result, which can be easily deduced from our previous results:

• p1(t) is an EIoM, that is p1(t) = p1, if and only if ∂ 
f 0

∂xo
1

= 
0. The easiest
way to prove this claim is by considering the commutation rule in (3.3) for
n = 1 and the definition (2.9). This can also be seen because, if 
f 0 does
not depend on xo

1 , it is clear that H does not depend on xo
1 , too. Therefore

[H, p1] = 0, and, as a consequence, p1(t) is constant in t .
• For the same reason p2(t) is an EIoM, if and only if ∂ 
f 0

∂xo
2

= 
0 (which implies
that H does not depend on xo

2 ). Of course αp1(t) + βp2(t) is an EIoM if

and only if α
∂ 
f 0

∂xo
1

+ β
∂ 
f 0

∂xo
2

= 
0.

• using (3.4) we can prove that αp2
1(t) + βp2

2(t) is an EIoM if and only
if all the following equalities hold: ∂ f1

∂xo
1

= ∂ f2

∂xo
2

= 0 and α
∂ f2

∂xo
1

+ β
∂ f1

∂xo
2

= 0.
These conditions are satisfied only if f1(x , y) = k1 y + m1 and f2(x , y) =
k2 y + m2, with αk2 + βk1 = 0. This shows that there exist very few SODE
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(2.1), with N = 2, for which αp2
1(t) + βp2

2(t) turns out to be an EIoM. It
is interesting to notice, however, that a very important example satisfies
these conditions. This example is the (classical) harmonic oscillator. We
will consider this example in details in the following.

• there is no non-trivial SODE (2.1) with N = 2 (i.e., with 
f not constant)
which admits αpn

1 (t) + βpn
2 (t) as an EIoM for n ≥ 3. This can be easily

shown to be a consequence of the fact that H is linear in the momentum
operators.

• We end this list with the following claim, which is again a consequence
of (3.4): αp2

1(t) + βp2
2(t) + γ p1(t)p2(t) is an EIoM of (2.1) with N = 2 if

all the following equalities are satisfied: 2α
∂ f1

∂xo
1

+ γ
∂ f1

∂xo
2

= 2β
∂ f2

∂xo
2

+ γ
∂ f2

∂xo
1

=

∇0 · 
f 0 = 0, and (α ∂2

∂(xo
1 )2 + β ∂2

∂(xo
2 )2 + γ ∂2

∂xo
1 xo

2
) 
f (xo

1 , xo
2 ) = 
0.

Now we deduce a more general result, which extends all the above particular
situations, but which is also harder to be applied. The starting point is that, in
order for a certain function A(p1(t), p2(t)) to be an EIoM, the function B(t) =
A(p1(t), p2(t)) − A(p1, p2) must be zero for all values of t . In particular, since
B(0) = 0, it is enough to require that Ḃ(t) = 0, for all t . Using (3.10) and (3.11)
we conclude that A is an EIoM whenever the following equation is verified:

∂ A

∂p1
H

( ∞∑
k=0

(i t)k

k!

�(k+1)

(x)

)
+ ∂A

∂p2
H

( ∞∑
k=0

(i t)k

k!

�(k+1)

(y)

)
= 0 (3.12)

A function A(p1(t), p2(t)) satisfying this condition can be easily found for a
wide class of SODE. Let us consider the following system:

{
ẋ1 = f1(ax1 + bx2)

ẋ2 = f2(ax1 + bx2)
(3.13)

with x1(0) = xo
1 , x2(0) = xo

2 and a, b both different from zero. We will show
now that equation (3.12) implies that any function A(p1(t), p2(t)) = A( 1

a p1(t) −
1
b p2(t)) is an EIoM.

To prove this claim, first of all we observe that such an A must satisfy the
following equation: a ∂ A

∂p1
= −b ∂ A

∂p2
. Therefore equation (3.12) becomes, using the

linearity of H in the p j
′s,

−1

a

∂ A

∂p2
H

( ∞∑
k=0

(i t)k

k!

(
b 
�(k+1)

(x) − a 
�(k+1)
(y)

))
= 0.
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To avoid trivial solution (A independent of p j ), we need to require ∂ A
∂p2

	= 0.
This implies that the equation above can be satisfied if, and only if,

∞∑
k=0

(i t)k

k!

(
b 
�(k+1)

(x) − a 
�(k+1)
(y)

)
= 
0 (3.14)

In order to check that this equality is satisfied for the system in (3.13) we first
notice that, whenever b 
�(k)

(x) − a 
�(k)
(y) = 
0, then b 
�( j)

(x) − a 
�( j)
(y) = 
0, for any j ≥ k.

In fact we have:

b 
�(k+1)
(x) − a 
�(k+1)

(y) = ib
(


�(k)
(x) · ( 
∇ f1) − 
f · ( 
∇ 
�(k)

(x),1

)
, 
�(k)

(x) · ( 
∇ f2)

− 
f · ( 
∇ 
�(k)
(x),2

))
− ia

(

�(k)

(y) · ( 
∇ f1) − 
f · ( 
∇ 
�(k)
(y),1

)
, 
�(k)

(y) · ( 
∇ f2)

− 
f · ( 
∇ 
�(k)
(y),2

))

= i
{ =
0︷ ︸︸ ︷(

b 
�(k)
(x) − a 
�(k)

(y)

) ·( 
∇ f1) − 
f 0 · ( 
∇
=0︷ ︸︸ ︷(

b 
�(k)
(x),1 − a 
�(k)

(y),1

) )
,(

b 
�(k)
(x) − a 
�(k)

(y)

)
︸ ︷︷ ︸

=
0

·( 
∇ f2) − 
f 0 · ( 
∇ (
b 
�(k)

(x),2 − a 
�(k)
(y),2

)
︸ ︷︷ ︸

=0

)} = 
0

It is straightforward to extend the proof to larger values of j .
Going back to equation (3.14), the proof of this equality is now reduced to the

proof of the following identity: b 
�(1)
(x) − a 
�(1)

(y) = 
0. But this is an easy consequence

of the equalities 
�(1)
(x) = i( ∂ f1

∂x1
, ∂ f2

∂x1
), 
�(1)

(y) = i( ∂ f1

∂x2
, ∂ f2

∂x2
) and from the dependence of

f j only on the combination ax1 + bx2.
As a concrete example of this result, we now consider the following SODE{

ẋ1 = ex1−x2

ẋ2 = cos(x1 − x2) + 1,

which is of the form (3.13) with a = −b = 1. Its Hamiltonian is

H = 1

2

(
p1exo

1 −xo
2 + exo

1 −xo
2 p1 + p2

(
cos(xo

1 − xo
2 ) + 1

)
+(

cos(xo
1 − xo

2 ) + 1
)

p2
)
.

We will now compute explicitly [H, p1 + p2] to check that A(p1(t), p2(t)) =
p1(t) + p2(t) is a constant of motion, as can be deduced from the above procedure.
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Using (2.7) we find that

[exo
1 −xo

2 , p1] = iexo
1 −xo

2 , [exo
1 −xo

2 , p2] = −iexo
1 −xo

2 ,

and [
cos

(
xo

1 − xo
2

) + 1, p1
] = −i sin

(
xo

1 − xo
2

)
,

[
cos

(
xo

1 − xo
2

) + 1, p2
]

= i sin
(
xo

1 − xo
2

)
,

so that

[2H, p1 + p2] = p1[exo
1 −xo

2 , p1 + p2] + [exo
1 −xo

2 , p1 + p2]p1

+ p2
[

cos
(
xo

1 − xo
2

) + 1, p1 + p2
] + +[

cos
(
xo

1 − xo
2

)
+ 1, p1 + p2

]
p2 = 0,

which is what we had to prove.
In the following part of this section we will analyze in some details few

examples.

Example 3.1. The harmonic oscillator

We consider first one of the best known system in classical mechanics: the
harmonic oscillator. The related SODE is{

ẋ = y

ẏ = −ω2x ,

with x(0) = x0, y(0) = y0. The classical solution is x(t) = x0 cos(ωt) + y0

ω
sin(ωt)

and y(t) = y0 cos(ωt) − x0ω sin(ωt). As for the classical IoM, this is clearly the
energy of the oscillator, E = y(t)2 + ω2x(t)2. Let us now see what can be deduced
using our strategy.

Since f1(x , y) = y, f2(x , y) = −ω2x , the Hamiltonian is H = p1 y0 −
ω2 p2x0. The time evolution x(t) and y(t) can be found computing
ei Ht (x0, y0)e−i Ht or using the last equality of formula (2.10), et 
f 0· 
∇0 (x0, y0). It
is an easy exercise to compute the various commutators in

x(t) = x0 + i t[H, x0] + (i t)2

2!
[H, x0]2 + (i t)3

3!
[H, x0]3 + · · · .

For instance [H, x0] = [p1 y0, x0] = −iy0, [H, x0]2 = −i[H, y0] =
−i[−ω2 p2x0, y0] = ω2x0 and so on. When we sum back the series, we get the
same classical result. Analogous computations must be performed to find y(t).

We can now compute also the time evolution of the momentum operators,
with the same technique (p j (t) = ei Ht p j e−i Ht ) or by means of (3.10)–(3.11).
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For instance we get

p1(t) = ei Ht p1e−i Ht = p1 + i t[H, p1] + (i t)2

2!
[H, p1]2 + (i t)3

3!
[H, p1]3 · · · .

= p1 + tω2 p2 − t2

2!
ω2 p1 − t3

3!
ω4 p2 + · · · = p1 cos(ωt) + ωp2 sin(ωt).

Analogously we find p2(t) = p2 cos(ωt) − p1

ω
sin(ωt). In order to use formula

(3.10) we need to compute first 
�(k)
(x), by means of the definition in (3.9). It is easy

to check that 
�(0)
(x) = (1, 0), 
�(1)

(x) = i(0, −ω2), 
�(2)
(x) = (ω2, 0), 
�(3)

(x) = −i(0, ω4),

�(4)

(x) = (ω4, 0) and so on, and therefore

H

( ∞∑
k=0

(i t)k

k!

�(k)

(x)

)
= H

(
(1, 0) + t(0, ω2) − t2

2!
(ω2, 0)

+ (i t)3

3!
(−i)(0, ω4) + · · ·

)
which, computing the infinite sum, gives the same result as above. Analogous steps
must be repeated for computing p2(t).

We now look for EIoM.
Equation (3.2) becomes y ∂ J1

∂x − ω2x ∂ J1
∂y = 0, which is solved by J1(x , y) =

y2 + ω2x2, so that we find back the classical result.
Another EIoM is the following: J2(p1(t), p2(t)) = p1(t)2 + ω2 p2(t)2. This

claim can be proved simply checking that [H, J2] = 0, or noticing that this example
fits the conditions given at the third point of the list of particular EIoM given
previously. We also can prove this claim with a direct substitution of p j (t), as
computed before: this gives p1(t)2 + ω2 p2(t)2 = p2

1 + ω2 p2
2. Finally, we can also

use equation (3.12), and show that J2 is a solution of this equation.
As this example suggests, the relevance of our strategy as far as we are inter-

ested to the explicit solution of a given SODE, is strongly related to (a) the possi-
bility of computing easily multiple commutators with a relatively simple operator,
H , and, (b) to the possibility of summing the infinite series we have obtained in
this way. While the first step can always be performed, this summation might not
be easy or even possible. However, it is clear that this strategy produces quite natu-
rally a perturbative approach to the dynamical problem: if we have some estimate
on the rest of the series, �∞

k=n+1
(i t)k

k! [H, A]k , where A is the operator whose time
evolution we are interested in, then we can say exactly in which sense A(t) can be
approximated by the finite sum �n

k=0
(i t)k

k! [H, A]k . This kind of estimates appear
almost everywhere in QM, and for this reason many techniques have been devel-
oped during the years in order to obtain some useful bounds, see, e.g., (Bagarello
and Trapani, 2002) and references therein.
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Example 3.2. Euler’s equation of the rigid body

This is another well known example arising in classical mechanics. Let A, B
and C be positive constants. The SODE is


ẋ = B−C

A yz

ẏ = C−A
B xz

ż = A−B
C xy

with x(0) = x0, y(0) = y0 and z(0) = z0. As it is well known, these equations are
easily solved only for some particular choices of the constants, e.g. for A = B.
The hamiltonian of the system is H = B−C

A y0z0 p1 + C−A
B x0z0 p2 + A−B

C x0 y0 p3.
It is easy to build up, now, two IoM using our strategy. The basic ingredient is

the commutation relation (2.7), which in particular implies that [p1, x2
0 ] = −2i x0,

[p2, y2
0 ] = −2iy0 and [p3, z2

0] = −2i z0. This fact, together with the analytical
expression of H , suggests to consider a generic linear combination of x2

0 , y2
0 and

z2
0, J = αx2

0 + βy2
0 + γ z2

0, since, with this choice, the commutator [H, J ] contains
the common factor x0 y0z0 multiplied by a constant. More explicitly we have

[H, J ] = −2i x0 y0z0

(
B − C

A
α + C − A

B
β + A − B

C
γ

)
,

which is identically zero if and only if B−C
A α + C−A

B β + A−B
C γ = 0. This last

equation is satisfied if α = A, β = B and γ = C or alternatively if α = A2, β =
B2 and γ = C2. We have recovered in this way the classical result which states
that both J1 = Ax(t)2 + By(t)2 + Cz(t)2 and J2 = A2x(t)2 + B2 y(t)2 + C2z(t)2

are IoM. We see here that the computation of an IoM is reduced to a (nontrivial)
algebraic operation: the analysis of the commutant of the operator H , i.e. the set
of operators which commute with H . We refer to (Bratelli and Robinson, 1979)
for many mathematical results concerning the theory of commutants.

Other quantities which commute with H can be found for particular choices
of the constants: if A = B then J3 = z(t) is an IoM, which of course implies that
x2(t) + y2(t) does not depend on time as well; if A = B = C the system trivializes
and J4 = αx(t) + βy(t) + γ z(t) is an IoM for all values of α, β and γ ; finally, if
B−C

A + C−A
B = 0, then (x2

0 + y2
0 )2 commutes with H and J5 = (x(t)2 + y(t)2)2 is

an IoM. It is particularly interesting the situation in which A = B: in this case we
have H = z0

2 (y0 p1 − x0 p2), which is essentially proportional to the z-component
of the angular momentum operator 
L = 
r0 ∧ 
p. It is well known that, in spherical
coordinates, Lz = −i ∂

∂ϕ
, (Cohen-Tannoudji et al., 1977 Merzbacher, 1970; Schiff,

1968). We are using unities in which h = 1. Therefore we have H = i
2r cos θ ∂

∂ϕ
,

which implies clearly that A(r, θ , ϕ) is an IoM if and only if it is independent of
ϕ. Then, since r =

√
x2 + y2 + z2 and θ = arccos(z/r ), it is straightforward to

recover the previous result: z(t) and x2(t) + y2(t) are both IoM.
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As for the EIoM, it is easy to check that, if for instance A = B, besides J3,
also J6 = y(t)p1(t) − x(t)p2(t) is constant in time, since [H, y0 p1 − x0 p2] = 0.
Notice that J6 has the same formal expression of an angular momentum, and this is
not surprising since A = B implies the existence of a symmetry in the (x , y)-plane.

Example 3.3. Let us consider the following SODE




ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = x1

with x j (0) = xo
j , j = 1, 2, 3, 4. The hamiltonian of the system is H = p1xo

2 +
p2xo

3 + p3xo
4 + p4xo

1 , and the time evolution of, say, x1 is obtained with the

usual expansion: x1(t) = ∑∞
k=0

(i t)k

k! [H, xo
1 ]k . The behavior of these commutators

is cyclic: [H, xo
1 ]0 = xo

1 , [H, xo
1 ]1 = −i xo

2 , [H, xo
1 ]2 = −xo

3 , [H, xo
1 ]3 = i xo

4 and,
again, [H, xo

1 ]4 = xo
1 . The sum of the series for x1(t) can be computed and we get

x1(t) = 1

4

(
xo

1 + xo
2 + xo

3 + xo
4

)
et + 1

4

(
xo

1 − xo
2 + xo

3 − xo
4

)
e−t

+ 1

4

(
xo

1 − i xo
2 − xo

3 + i xo
4

)
eit + 1

4

(
xo

1 + i xo
2 − xo

3 − i xo
4

)
e−i t ,

which coincides with the classical result.
For what concerns the EIoM, it is not difficult to construct an operator E which

commutes with H . This operator is E = p2xo
1 + p3xo

2 + p4xo
3 + p1xo

4 : [H, E] =
0. Notice that E can be obtained from H in the following way: E = H (xo

j ↔ p j ).

Example 3.4. Lotka-Volterra system

Let us consider the following SODE{
ẋ = αx − βxy = f1(x , y)

ẏ = −γ y + βxy = f2(x , y),

where α, β and γ are real constant. This system is very well known in the biological
literature since it describes a two-species system. The analytical solution cannot
be obtained but for special values of the constants. Nevertheless, it is well known
that I (x , y) = β(x + y) − γ log(x) − α log(y) is an IoM for this system.

This result can be recovered following our strategy: first we remark that
the hamiltonian for the SODE above looks like H = x0(α − βy0)p1 + y0(−γ +
βx0)p2 + i

2β(y0 − x0), neglecting an additional term in the definition of H , which
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is irrelevant since it commutes with everything, (Cohen-Tannoudji et al., 1977
Merzbacher, 1970; Schiff, 1968). In order to find an IoM we should be able to
find elements in the commutant of H . This can be done more conveniently by
considering first the change of variable q1 = log x and q2 = log y, which maps the
original SODE into {

q̇1 = α − βeq2

q̇2 = −γ + βeq1 .

With the same strategy developed in Section II we introduce two momentum
operators canonically conjugate to qo

1 = log x0 and qo
2 = log y0: [qo

j , Pk] = iδ j,kI,
for j, k = 1, 2. In these new variables the hamiltonian takes the form H̃ = P1(α −
βeqo

2 ) + P2(−γ + βeqo
1 ), which can be conveniently written as H̃ = H0 + H1,

where H0 = αP1 − γ P2 and H1 = β(P2eqo
1 − P1eqo

2 ). Because of its analytic ex-
pression it is now very easy to find an operator I0(qo

1 , qo
2 ) which commutes with

H1: in fact, since (2.7) implies that

[H1, I0] = −iβ

(
eqo

1
∂ I0

∂qo
2

− eqo
2
∂ I0

∂qo
1

)
,

it is enough to take I0(qo
1 , qo

2 ) = a(eqo
1 + eqo

2 ), a any complex number, to conclude
that [H1, I0] = 0. However I0 is not an IoM because we have [H0, I0] = ia(γ eqo

1 −
αeqo

2 ) 	= 0. Therefore, we can try to add a contribution to I0, I1, in such a way that
I = I0 + I1 is an IoM. In other words, we are trying to find a function I1(qo

1 , qo
2 )

such that

[H, I ] = ia(γ eqo
1 − αeqo

2 ) + [H0, I1] + [H1, I1] = 0.

Since H0 is linear in the momentum operators and does not depend on qo
j , it is

clear that J (qo
1 , qo

2 ) = γ qo
1 + αqo

2 commutes with H0: [H0, J ] = 0. Furthermore,
using (2.7), we find [H1, J ] = iβ(γ eqo

1 − αeqo
2 ). Therefore, it is enough to take a =

−β and I1 = J to conclude that I (qo
1 , qo

2 ) = −β(eqo
1 + eqo

2 ) + γ qo
1 + αqo

2 is an
IoM. It is also easy to check that, in the original variables, we recover immediately
the classical result. Also in this case we have solved the problem of finding an IoM
to the analysis of the commutant of the hamiltonian H , (Bratteli and Robinson,
1979a,b).

For what concerns the EIoM, we know from the general theory that at least
one (proper) EIoM exists for such a system: H itself. Unfortunately, the techniques
developed in this section does not allow to find easily other EIoM, but for very
special choices of the constants. For instance, if β = 0 then both J1 = y0 p2 and
J2 = x0 p1 commute with H .

However, our procedure produces some interesting hints if we rewrite H as
H = αxo p1 − γ y0 p2 − βx0 y0(p1 − p2) + i

2β(y0 − x0), we are suggested to con-
sider A(x(t), y(t)) = x(t) + y(t) as a possible IoM, since xo + y0 surely commutes
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with the second and the third terms in H . However, calling H1 = αxo p1 − γ y0 p2,
we find that [H1, x0 + y0] = i(γ y0 − αx0), so that A cannot be an IoM. However,
this result suggests to analyze the case in which α = −γ . In this case, in fact, it
turns out that [H, x0 + y0]k = (iγ )k(x0 + y0), so that x(t) + y(t) = e−γ t (x0 + y0).
This result coincides with the classical one, which can be deduced from the system
above under the same condition.

Let us now define xN (t) = ∑N
k=0

(i t)k

k! [H, x0]k and yN (t) = ∑N
k=0

(i t)k

k! [H, y0]k ,
for some fixed N ∈ NN . It is clear that xN (t) and yN (t) approximate, in some way,
the correct solutions x(t) = ∑∞

k=0
(i t)k

k! [H, x0]k and y(t) = ∑∞
k=0

(i t)k

k! [H, y0]k . In
order to see in which sense x(t) and y(t) are approximated, instead of considering,
e.g., x(t) − xN (t), we will consider I (xN (t), yN (t)). This is clearly a matter of con-
venience: while an estimate of x(t) − xN (t) is hard since we have to estimate the
rest of a series, it is much easier to estimate �N (t) = I (xN (t), yN (t)) − I (x0, y0).
However, this kind of estimate can only give an idea of the validity of our approxi-
mation, while a rigorous result can only be obtained considering x(t) − xN (t). Just
as a pedagogical example, we take here only the first non trivial approximation,
N = 1. Since{

x1(t) = x0 + i t[H, x0] = x0(1 − t(γ + βy0)), and

y1(t) = y0 + i t[H, y0] = y0(1 − t(γ − βx0)),

we get �1(t) = −tβγ (x0 + y0) + γ log( 1−t(γ−βx0)
1−t(γ+βy0) ). It is not hard to check then

that, whenever t(γ + βy0) < 1, �1(t) ≤ t2βγ (x0+y0)(γ+βy0)
1−t(γ+βy0) , which is quite small for

t small enough. This suggests that, at least for small values of t , x1(t) and y1(t)
are a reasonable approximation of x(t) and y(t). We don’t want to go on with
this perturbative analysis of the solution of the model, since this is not our major
interest, here. More details will be given in a further paper.

We end this section introducing an approach, arising from quantum many
body theory, (Cohen-Tannoudji et al., 1977; Merzbacher, 1970; Schiff, 1968),
which turns out to be particularly interesting in finding the integrals of motion of
a given SODE, because it maps the original system of differential equations in a
quantum system of N kinds of bosonic excitations. As before, in order to maintain
the notation simple, we fix N = 2 in (2.1).

As it is widely discussed in the literature to any conjugate pair (x , p) of self-
adjoint (unbounded) operators satisfying [x , p] = i11, it is possible to associate
two operators, called the creation and annihilation operators a and a† satisfying
the canonical commutation relation (CCR) [a, a†] = 11, in the following way

a = x + i p√
2

, a† = x − i p√
2

, and, vice versa, x = a + a†
√

2
, p = i

a† − a√
2

.

We refer to (Cohen-Tannoudji et al., 1977; Merzbacher, 1970; Schiff, 1968)
for many details concerning the use of these operators, which give rise to what is
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usually called second quantization. Here we just want to remind few facts about
these operators. Any time we have a pair of operators satisfying the CCR, we can
also define a number operator N = a†a and a set of vectors �n = 1√

n!
(a†)n�0,

where �0, called the ground state, is uniquely defined (up to a phase), by the
requirement that a�0 = 0. The following equations hold:


N�n = n�n , ∀n ≥ 0

N (a�n) = (n − 1)(a�n), for n = 1, 2, . . . ,

N (a†�n) = (n + 1)(a†�n), ∀n ≥ 0.

Because of these equations, we say that �n is a vector with n bosons, that a
annihilates one boson while a† creates one boson. N is called the number operator
just because it counts the bosons of a given vector.

Let us consider now the following SODE, which is clearly associated to an
harmonic oscillator with ω = 1, see Example 1:{

ẋ1 = x2

ẋ2 = −x1.

The operator H in (2.9) becomes H = p1xo
2 − xo

1 p2. Since we have two pairs
of conjugate operators, (xo

1 , p1) and (xo
2 , p2), we need to introduce two different

pairs of creation and annihilation operators, (a1, a†
1 ) and (a2, a†

2 ), whose definitions
are the same for each boson mode. The CCR are now

[ai , a†
j ] = 11δi, j , [a†

i , a†
j ] = [ai , a j ] = 0. (3.15)

In terms of these operators we find that H = i(a2a†
1 − a1a†

2 ), which has a
clear physical interpretation: the first term annihilates a boson in mode 2 (briefly, a
2-boson) and creates a boson in mode 1 (briefly, a 1-boson). The second term does
exactly the opposite. For this reason, it is clear that the total number of the bosons
is preserved by H , which means that the total number operator N = a†

1 a1 + a†
2 a2

should commute with H . This can be checked explicitly, by means of the (3.15):
[H, N ] = 0. In terms of the original operators N assumes the following expression:
N = 1

2 ((xo
1 )2 + p2

1) + 1
2 ((xo

2 )2 + p2
2) − 11, which, of course, must not be confused

with the classical result which states that the sum of the kinetic and potential energy
is constant for the oscillator. Moreover, it is interesting to notice that, in a certain
sense, H and N contain the same dynamical information. To see this, let us first
notice that [N , xo

1 ] = −i p1, [N , xo
2 ] = −i p2, [N , p1] = i xo

1 and [N , p2] = i xo
2 .

Therefore, calling X (t) = ei Nt xo
1 e−i N t and PX (t) = ei Nt p1e−i N t , we deduce that

Ẋ (t) = PX (t) and ṖX (t) = −X (t), so that Ẍ (t) = −X (t). Analogously, defining
Y (t) = ei Nt xo

2 e−i N t , we find Ÿ (t) = −Y (t). Therefore, since the initial condi-
tions coincide with those for x1(t) and x2(t), we deduce that x1(t) = X (t) and
x2(t) = Y (t). This aspect of our approach, which looks quite appealing to us,
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should be further investigated since it suggests that, at least sometimes, an opera-
tor commuting with H can produce the same dynamical behavior as the one given
by H .

We want to show now how the example considered above can produce non
trivial information in other situations. Again, for pedagogical reasons, we consider
a system of only two differential equations, or, in a second quantization language,
only two modes of bosons: mode 1 and mode 2. We suppose that the hamiltonian H ,
in terms of the creation and annihilation operators, takes the form H = (a†

1 )na2 +
a†

2 an
1 . In the same way as before, the action of H on a vector �(1)k × �(2)l produce

a combination of the following vectors �(1)k+n × �(2)l−1 and �(1)k−n × �(2)l+1

(with the agreement that �(i) j is the zero vector if j < 0). It is clear that the
same argument of conservation of the total number of bosons cannot be repeated
here: a vector with k + l bosons is mapped into a combination of vectors with
k + n + l − 1 and k − n + l + 1 bosons respectively! However, it is also clear
that to produce n 1-bosons we have to destroy 1 2-boson. Moreover, in order
to produce one 2-boson, we need to destroy n 1-bosons. All that suggests the
existence of a conserved operator which is a sort of total energy for the two modes
of bosons: E = a†

1 a1 + na†
2 a2. This operator looks identical to an hamiltonian of

an harmonic oscillator with two modes, the first with frequency ω1 = 1 and the
second with frequency ω2 = n, (Cohen-Tannoudji et al., 1977; Merzbacher, 1970;
Schiff, 1968). Finally, it is straightforward to check explicitly that [H, E] = 0, as
expected.

These simple examples show how this second quantization language may be
relevant in the analysis of a given SODE because it transfers the original problem
into a totally different settings, where simple “energetic” remarks can be used in
the search of EIoM.

4. SOME MATHEMATICAL RIGOR AND MORE INFORMATION

We devote this section to a short discussion of some mathematical details
concerning the procedure developed in the previous sections.

In our approach the system{
ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)
(4.1)

is considered as an operatorial SODE: x j , fk are operators acting on the Hilbert
space H = L2(RR2). For each variable x j we can introduce a conjugate opera-
tor p j , [x j , p j ] = i11, which also acts on H. It is well known that, because of
these commutation rules, x j and p j are both (self-adjoint) unbounded opera-
tors, so that they cannot be defined on all of H but only on the dense domain
D = S(RR2), see e.g. (Reed and Simon, 1980). It is clear that all the powers of the
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position and momentum operators are self-adjoint and that they map S(RR2) into
itself.

For what concerns H , which is the key operator in our strategy, it is possible
to show that its domain, D(H ), contains D and that, for all ϕ, � ∈ D(H ) the
following equality is satisfied: < Hϕ, � >=< ϕ, H� > . This implies that H is
symmetric, so that it can be exponentiated using standard techniques of functional
analysis, (Reed and Simon, 1980), under few additional assumptions. This is an
important feature since the series

∑∞
k=0

(i t H )k

k! , has no meaning in general when
H is not everywhere defined. In this case, however, many other approaches have
been considered in the literature to give a rigorous meaning to ei Ht and to the
(Heisenberg-)time evolution of the operators, αt , see (Bagarello and Trapani, 2002)
and (Bagarello et al., 2004) for instance.

Another remark, still related to the definition of αt , is about the rigorous
definition of the commutant of H and, more generally, the meaning of formulas
like

∑∞
k=0

(i t)k

k! [H, xo
1 ]k : in fact, since H is usually an unbounded operator, as well

as xo
1 , the commutant of H must be understood in a weak sense, (Bratteli and

Robinson, 1979a,b). Also, while [H, xo
1 ] may have no meaning, < ϕ, [H, xo

1 ]� >
is well defined if ϕ and � are both taken in D. Moreover, it is also to be considered
the problem of the convergence of the series which define the time evolution of a
given operator, but this is a very hard problem and there are few general results on
this point in our knowledge but for a general strategy proposed in (Bagarello and
Trapani, 2002), which uses, as a framework, some particular algebras of unbounded
operators. Here, as an example, we only want to discuss a situation where the sum
of this series exists finite.

Suppose that there exists an integer K and a positive real number L such that
the following holds:

sup
ϕ,�∈D

| < ϕ, [H, x0]K � > | = L . (4.2)

Then, since H maps D into itself, calling ϕH = Hϕ and �H = H� we get

| < ϕ, [H, x0]K+1� > | ≤ | < ϕH , [H, x0]K � > | + |
< ϕ, [H, x0]K �H > | ≤ 2L ,

which implies that, for all positive integers n,

sup
ϕ,�∈D

| < ϕ, [H, x0]K+n� > | ≤ 2n L .

This estimate ensures the existence of
∑∞

k=0
(i t)k

k! < ϕ, [H, xo
1 ]k� > , for any

ϕ, � ∈ D. To see this, it is enough to split the sum in two contributions, the
first

∑K−1
k=0

(i t)k

k! < ϕH , [H, xo
1 ]k� > , which exists since it is a finite sum, and the

second
∑∞

k=K
(i t)k

k! < ϕH , [H, xo
1 ]k� > , which converges because of the previous

estimate.
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Of course, our working assumption (4.2) is very strong, but it has been chosen
here since it gives an idea of the kind of problems which usually arise in QM, as
well as of the possible ways to overcome these problems.

The relation between the classical solution 
xcl(t) of system (4.1) and the
operatorial solution 
xop(t) which is produced by our approach is now evident:
taken any two functions ϕ and � in D, the following equality holds:

< ϕ, 
xcl(t)� >=< ϕ, 
xop(t)� > , ∀t ∈ RR. (4.3)

As for the formalization of the second quantized approach, this is a standard
topics in QM and we will not discuss it here. We refer to (Bratteli and Robinson,
1979a,b) for all the details.

Let us now consider briefly the role of the symmetries in our approach. As in
the standard literature, we say that a map U acting on a solution (x1(t), x2(t)) of
system (4.1) is a symmetry if U (x1(t), x2(t)) is again a solution of the same system.
We can prove the following statement:

Proposition 4.1. Let (x1(t), x2(t)) = eiHt (xo
1 , xo

2 )e−i Ht be a solution of system
(4.1) corresponding to the initial conditions (x1(0), x2(0)) = (xo

1 , xo
2 ). Let A be an

operator with domain D for which eA can be defined. Then:

(a) (a1(t), a2(t)) := eA(x1(t), x2(t))e−A is again a solution of system (4.1)
corresponding to the initial conditions (a1(0), a2(0)) = eA(xo

1 , xo
2 )e−A;

(b) if (a1(t), a2(t)) is another solution of system (4.1), then there exists an
operator A with domain D and such that eA can be defined, for which
(a1(t), a2(t)) := eA(x1(t), x2(t))e−A.

Remark 4.1. Any self-adjoint operator A, bounded or not, is such that eA is a
well defined (bounded or not) operator. But eA is well defined also under other
assumptions, for instance if A is bounded or if A is anti-hermitian.

Proof: It is trivial to check the statement (a).
To prove (b), let us suppose that (x1(t), x2(t)) and (a1(t), a2(t)) are both

solutions of system (4.1). Then it is enough to take A = i(a1(0) − x1(0))p1 +
i(a2(0) − x2(0))p2, which is defined on D and which can be exponentiated, to
pass from a solution to another. �

Of course, what is contained in this paper is only a first step in the analysis of
our procedure. We expect to continue this analysis in a close future. In particular,
we believe that the second quantization approach deserves a deeper investigation
because of its role in the search of EIoM.

Also, the extension of our strategy to partial differential equations and to
more general SODE has to be considered. It is particularly interesting, in our
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opinion, to analyze the Schrödinger and the Klein-Gordon equations of motion,
which describe quantum systems for their own: in these cases, what is our H? And
how this H is related with the true quantum hamiltonian?

Last but not least, in view of possible applications to the determination of
EIoM, it must be checked in details the existing literature concerning the construc-
tion of operators which commute with a given observable. This kind of problems
sometimes appears: for instance, if we construct the algebra A generated by H
and by the identity 11, the so-called center of A is important for us since it contains
operators which commute with H .
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